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Diffusion process in a flow
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We analyze circumstances under which the microscopic dynamics of particles which are driven by a forced,
gradient-type flow can be consistently interpreted as a Markovian diffusion process. In the case of conservative
forces(we adopt a smooth, deterministic version of “stirring” without any circular mogjdine repulsive case
only, F=VV with V(x,t), bounded from below, is unquestionably admitted by the compatibility conditions.

To allow for an attractive force, the process must induce a nonstandard compensating pressure term in the local
(momentum conservation law. In particular, that applies to a probabilistic interpretation of a compressible
Euler flow with an arbitrary externgNewtonian forcing. [S1063-651X98)08701-1

PACS numbds): 47.55.Kf, 05.40+j, 05.60+w

Whenever one tries to analyze random perturbations thahe driving velocity fieldv (x,t) and hence of the related drift

are _eiFher sgperimposed upon or intri_nsic tq a driving deterﬁ(;,t) is normally in typical physical problemsregarded as
ministic motion, quite typically a configuration space equa-grhitrary (except for being “not too nonlineay’

tionX=0v(X,t) is invoked, which is next replaced by a formal ~ The situation looks deceivingly simp[&], if we are (for
infinitesimal representation of an "ltaliffusion process examplg interested in a diffusion process interpretation of
dX(t) = B(X(t),)dt+ V2D dW(t). HereW(t) stands for the Passive tracers dynamics in taepriori given flow whose
normalized Wiener noise, and for a diffusion constant. velocity field is a solution of the nonlinear partial differential

) , . , o equation, be it Euler, Navier-Stokes, Burgers or the like. An
The dynamical meaning di(x,t) relies on a specific diffu- jmpjicit assumption, that passively buoyant tracers in a fluid
sion input and its possible phase-spa@eg., Langevil  have a negligible effect on the flow, looks acceptaibiasi-
implementation, that entail a detailed functional relatlonsh|pca||y in the case when the concentration of a passive com-
of v(x,t) andb(x,t), and justify such notions as: diffusion in ponent in a flow is small Then one is tempted to view
an external force field, diffusion under various strains, diffu-directly the fluid velocity fieldv (x,t) as the forward drift
sion along, against, or across the driving deterministic flowg s 1y of the process, with the contaminant being diffusively
[1], and diffusion with shear effec@]. The pertinent math-  gispersed along the streamlines.

of a single particle in flows of various origin and the diffu- physical context and the phenomenoldgg, e.g., the Bolt-
sive transport of neutrally buoyant components in flows ofzmann equation with its, as yet, not well understood Brown-
the hydrodynamic type. ian motion approximationstanding behind the involved par-
Our major issue is a probabilistic interpretation of varioustial differential equations, some stringent mathematical
linear and nonlinear partial differential equations of physicalcriteria must be met to justify the diffusion process scenario,
relevance. Expressing this in more physical terms, we adbe it merely a crude approximation of reality.
dress an old-fashioned problem of “how nonlinear” and That is, in general, the assumed nonlinear evolution rule
“how time dependent” the driving velocity field can be to for v(x,t) must be checked against the dynamics that is al-
yield a consistent stochastic diffusion proceés the |owed to govern the space-time dependence of the forward

Langevin-type dynamigs Another issue is to obtain hints i field b(x,t) of the pertinent procedd], which isnot at
about a possible non-deterministic origin of such fidl8ls o arpitrary. The latter is ruled by standard consistency con-
Clearly, in random media that are statistically at rest, dif-itions that are respected by any Markovian diffusion pro-

fusion of single tracers or dispersion of pollutants are welloegq “and additionally by the rules of the forward and back-
described by the Fickian outcome of the molecular agitationyo -4 |to calculus [1,4], the mathematical input that is

and also in the presence of external force fie{then in frequently ignored in the physical literature.
terms of Smoluchowski diffusionsOn the other hand, it is We have analyzed this issue befdfd, where, as a by-

of fundamental importance to understand how flows in a,.5quct of the discussion. the forced Burgers dvnamics
random mediunfluid, as exampleaffect dispersion. Such b ’ g y

velocity fields are normally postulated a&s priori given = SR v AV R

agents in the formalism, and thémolecular or elsgorigin dwet(veV)vg=DAve+ VL @

is disregarded. Moreover, the force exerted upon tracers ignd the diffusion-convection equation

usually viewed independently from the forcini¢stirring” )

that might possibly perturb the random medium itself. ac+(vg-V)e=DAcC 2)
Except for suitable continuity and growth restrictions,

necessary to guarantee the existence of the pro?(essgov- [originally, for the concentration(ff,t) of a passive compo-
erned by the [tstochastic differential equation, the choice of nent in a flow, in the case of gradient velocity fields, were
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found to be generic to a Markovian diffusion process input. ) 1/p2 .
In that case the dynamics of the concentrationgeneral Q(x,t)=2D| 6;P + > ﬁJrV-b) , (8)

this notiondoes notcoincide with the probability density

results from the stochastic process whose den/s(bf/,t) whereﬁ(i t)=2DVﬁ>(>? ).

evolves according to the standard Fokker-Planck equation  £q the existence of the Markovian diffusion process with

the forward driftb(x,t), we must resort to potential3(x,t)

that arenot completely arbitrary functions. Technically],

the minimal requirement is that the admissible potential is

bounded from below. This restriction will have profound
. .. . consequences for our further discussion of diffusion in a

b+ (b-V)b=—-DAb+VQ, 4 flow.

If we setp=p;+ p, again, and demand that # p solves

the Fokker-Planck equation with the very same difi,t),
as p does, then as a necessary consequence of the general

formalism [5,7], the concentratiore(x,t) = p;(X,t)/p(X,t),
solves an associated diffusion-convection equatigo
:l‘(l;B'V-))CZDAC. Here, the flow veIocityJB(i,t) coin-
cides with the backward drift of the generic diffusion process
with the densityp(X,t).

dp=DLp—V-(bp), &)

the forward drift solves an evolution equation

and there holds
b=vg+2DV Inp. (5)

The previous reasoning can be easily exemplified by con
sidering the standartheglecting external forcg€Brownian
motion with the initial (arbitrary, but sufficiently regular

density po(X). Its evol_ut|onpo(x)—>p(x,t) 'S |mplcimepted We should clearly discriminate between forces whose ef-
by ~the  conventional heat  kernel p(y,s,x.t)  fectis a “stirring” of the random medium and those acting
=[47D(t—s)] Y%exd —(x—y)?4D(t—9)], wherex andy selectively on diffusing particles, with a negligible effect on
stand for space variables, whiteand's, 0<s<t, refer to  the medium itself. For example, the traditional Smolu-
respective time instants. The backward drift of the pro¢ass chowski diffusion processes in conservative force fields are
solution of the unforced Burgers equatjpis defined as fol-  considered in random media that are statistically at rest. Fol-
lows: vg(X,t) = —2DV Inp. The pertinent concentration dy- lowing the standardphase-space, Langeyimethodology,

namics is given by let us setb(x)=(1/8)K(x), where B is a (large friction
coefficient ancK represents an external Newtonian force per
c(i,t)=f p*(§,0,§,t)co(§)d3y, 6) Llnit ofemass(e.g., an acceleratigrthat is of gradient from
K= —VU. Then the effective potentidd reads
where p, (y,0x,t)=p(y,0x,t)[ po(y)/p(x,t)], and clearly K2 D. .
refers to a tagged population of Brownian particles which 0= 2_’32+ EV'K: ©)

belong to an overall diffusing Brownian ensemble. Indeed, if
we arbitrarily decompose the density of the process jto and the only distinction between the attractive or repulsive

=p1+py and regardpy(x,t) as the density of a tagged cases can be read out from the tefimK. For example, the

Brownian populatio_n, then an appro_priate definition of theparmonic attraction or repulsidﬁz ¥ ax, a>0 would give
concentration(effectively, we deal with the percentage of

tagged particles in the generic flpis rise to a harmonic repulsion, if interpreted in term&/@3, in

view of Q=(a?/28%)x?+3Dal/B. The innocent looking
+3D(«a/B) renormalization of the quadratic function gives
ey (7) rise to entirely different diffusion processes, with an equilib-
p(x,t) rium measure arising in case 0f(x) = + (a/2)x2 only.
The situation would not change under the incompressibil-
By inspection, one can check the validity of the diffusion- ity condition (cf. also the probabilistic approaches to the Eu-
convection equation. ler, Navier-Stokes, and Boltzmann equati¢8}. Following
By combining intuitions which underly the self-diffusion Townsend's[2] early investigation of the diffusion of heat
Qescrlptlon[G] with those ap_proprlate for probabilistic solu- spots in isotropic turbulence, we may chood#(x)
tions of the so-called Schadinger boundary-data and next- 2 2, 2 R I
interpolation problemg5,7,8, the above argument can be — (¢/2)X 2_(0[;4)(3/ tz )2 W?'Ch impliesV-K=0. Then,
generalized to arbitrary conservatively forced diffusion pro-2(X)=(a/28%)[x"+ 3(y“+2°)]; hence the repulsivel is
cesses, quite irrespectively of a physical context in whictProduced again in the equation of motion characterizing a
their usage can be justified. stationary diffusion in an incompressible fluid: div=0, b
Let us consider a densiuy(i,t),tzo of a stochastic dif- =5* =5H(5~V)5=VQQ. By formally changing the sign of
fusion process, solving the Fokker-Planck equati®n For ), we would arrive at the attractive variant of the problem;
drifts that are gradient fields, the potentfalin Egs.(1) and  that is, howeverincompatiblewith the diffusion process sce-
(4) (whateverits functional form i3, mustallow for a repre-  nario in view of the unboundedness f() from below.
sentation formula, reminiscent of the probabilistic Cameron- We have thus arrived at the major point of our discussion:
Martin-Girsanov transformation a priori, there is no way to incorporate the attractive forces

C()Z,t) _ pl(xit)
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which affect(drive) the flow and nonetheless generate a convelocity fields, without going into apparent contradictions.

sistent diffusion-in-a-flow transport. Clearly, there is no rea-gpecifically, Eq.(4) with v (x,t)—b(x,t) must be valid.

son to excl_ude th_e attractive variants 9f the pote_lﬁaa‘rom_ By resorting to velocity fieldsv (i,t) which obey

considerations, since the deterministic motion is consisten{ - - .
v(x,t)=0, we may pass from E@4) to an equation of the

with them. However, if the diffusion is to be involved, we
L - - ' " Euler form, Eg.(10), provided Eq.(8) holds true, and then
can save the situation only by incorporatifigtherto uncon he right-hand-side of E(4) involves a bounded from be-

sidered “pressure” term effects as suggested by the gener ) .

f £ th ible EuleFe — ¥V stands f ¢ ow effective potentiak).

orm ot the compressible £ule (_._ stands for exter- An additional requirement is that
nal volume forces, ang for the fluid density thattself un-
dergoes a stochastic diffusion procesguation

- 1. -
F—-VP=V(. 14
O p
&tvE+(vE-V)vE=F——VP, (10) i .
P Clearly, in the case of a constant pressure, we are left with

. . . . the dynamical constrainb-vg),
or the incompressiblg9] Navier-Stokes equation y € ve)

, 1 ab+(b-V)b=F=VQ, (15)
dnst (Uns V)ons=—Avnst F—=VP, 11
wist (Wns V)uns p N p 1D combining simultaneously the Eulerian fluid and the Markov
! . diffusion process inputsf and only if Fis repulsive, e.g.

h hE 4), th I - .

both to be compared with Eqel) and(4), that set dynamica —V(x,t) is bounded from below. Quite analogously, by set-

constraints for respectively backward and forward drifts of a_ - . i 7
Markovian diffusion process. ting F=0, we would obtain a constraint on the admissible

Notice that the acceleration terfin Egs.(10) and(11) pressure term, in view of
is noimally regarded as arbitrary, while the corresponding o 1. )
termVQ in Egs.(1) and(3) involves a bounded from below db+(b-V)b=—-VP=VQ. (16)
function Q(x,t). Since, in the case of gradient velocity P

fields, the dissipation term in the incompressible Navier- | poth cases of Eq$15) and(16), the effective potential
Stokes equatiofiL1) identically vanishes, we should concen- ) myst respect the functional dependefme a forward drift
trate on analyzing the possible “forward drift of the Markov- ang its potential prescription(8). In addition, the Fokker-

ian process” meaning of the Euler flow with the velocity Planck equatior3) with the forward driftz;E(i,t)iS()Z,t)

field v [EQ. (10)]. : e
/ N must be valid for the density(x,t).
At this point it is useful, at least on formal grounds, to To our knowledge, in the literature there is only one

invoke the standard phase-space argument that is valid forI?ﬁown specific class of Markovian diffusion processes that

'Ylajkom,m diffusion proc?‘s,s taking Place in a Q'Ve” Tlo_WwouId render the right-hand side of E(LO) repulsive but
v(x,t) with as yet unspecified dynamics or physical origin. nevertheless account for the troublesome Newtonian accel-
We account for an explicit force exerted upon diffusing Parg ations: e.g., those of the form V'V, with +V bounded

ticles, while not necessarily directly affecting the driving from below. Such processes have forward drifts that, for
flow itself. That is[2,4], for infinitesimal increments of . - '
phase-space random variables, we set each suitable, bounded from below functig(x), solve the

nonlinear partial differential equation
dX(t)=V(t)dt,

(12) ab+(b-V)b=—-DAb+V(2Q—-V), 17)
dV(t)= Blv(x,t)—V(t)]dt+K(x)dt+ B\V2DdW(t). with the compensating pressure term
Following the leading idea of the Smoluchowski approxi- ZAp”? - L.
mation, we assume thak is large, and consider the process Q=2D"— = Ut DV-u, (18
for times significantly exceeding™!. Then an appropriate P

choice of the velocity field?(i,t) (boundedness and growth
restrictions are involvedmay in principle guaranteft] the

convergence of the spatial péft(t) of procesg12) to the Ifo A discussion can be found in Refgl,5,7,9.
diffusion process with infinitesimal incrementahere the Clearly, we have Y
force K effects can be safely ignored if we are interested

mostly in the driving motioh e 9V, ¥20 1§P 19
- l - p )

u(x,t)=DV Inp(X,t).

dX(t)=v(x,t)dt+ 2DdW(t). (13
where
However, one cannot blindly insert in the place of the

forward drift v(x,t) any of the previously considered bulk P(x,t)=—2D2p(x,t)A Inp(X,t). (20)
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Effectively, P is here defined up to a time-dependent con- Our finding is that solutions of the compressible Euler
stant. Another admissible form of the pressure term readequation are appropriate for the description of the general
(summation convention is impligit nondeterministic(e.g., random and Markoviandynamics
running under the influence of both attractive and repulsive
stirring forces, and refer to a class of Markovian diffusion

processes orginally introduced in Rdi4,7,3. That involves

If we consider a subclass of processes for which the diss;ipao—nIy the gradient velocity fieldéa couple of issues concern-

tion term identically vanishea number of examples can be INg the curb#0 velocity fields and their nonconservative
found in Refs[7]), forcing were raised in Ref5]).

Remark: Let us stress that a standard justification of the
hydrodynamic limit for a tracer particle invokes a Brownian
particle in an equilibrium fluid. An issue of how much the
Eq. (17) takes a conspicuous Euler forfh0), 5E<—>6. tracer particle disturbs the fluitandom medium locally,

Let us notice that Eqg20) and(21) provide for a gener- and how far away from the tracer particle the thermal equ-
alization of the more familiar, equation of stefe-p, ther-  librium conditions regain their validity6], is normally dis-
modynamically motivated and suited for ideal gases and fluregarded. Moreover, in the standard derivation of local con-
ids. In the case of density fields for whichAlnp~const,  servation laws from the Boltzmann equation, the forcing
the standard relationship between the pressure and the de@rm on the right-hand side of the Euler or Navier-Stokes
sity is reproduced. In the case of density fields obeying equation up to scalings does coincide with the force acting
—A Inp=0, we are left with at most a purely time- on each single particle comprising the system. Thus, in this
dependent or constant pressure. Pressure profiles may B&mework, there is no room for any discrimination between
highly Comple_x fo_r arbitrarily chosen initial density and/or ¢, ceg acting upon tagged particles and those perturbing the
the flow velocity fields. spatial flows(once on the level of local averages

To conclude the present di§cussion, Iet. us invokg Refs. Quite on the contrary, the force term in the Kramers equa-
[9.6,7. The problem of a diffusion process interpretation 01Etion and that appearing in the related local conservation law

various pal’FI&_ll dlfferentla_l equatlt_)ns 'S kn_own to extend be-for the forward drift or for the current velocity of the diffu-
yond the original parabolic equations setting, to general non-

linear velocity field equations. On the other hand, the non>'ON Process are knowrot to commd_e n gef‘era'- Typl_cally,
linear Markov jump processes associated with the Boltzman{'¢ &ction of an external force is confined to diffusing
equation, in the hydrodynamic limit, are believed to imply ({299€d particles withno global or local effect on the sur-
either an ordinary deterministic dynamics with the velocity'ounding random medium, cf. standard derivations of the
field solving the Euler equation, or a diffusion process whose>moluchowski equation. This feature underlies problems
drift is a solution of the incompressible Navier-Stokes equaith the diffusion process interpretation of general partial
tion (in general, without our cwil=0 restriction, [6,9]. The c_hfferenual e_quatlons governing physmally rele_vant velocity
case ofarbitrary external forcing has never been satisfacto-fields. Specifically, any external interventigforcing) upon
rily solved. a st_ochashcally e_volvm_gm the diffusion process approxi-
Our reasoning went otherwise. We asked for the admisMation system gives rise to a perturbation of local flows,
sible space-time dependence of general velocity fields tha¥hich seldom can be analyzed as forcing any definite type
are to play the role of forward drifts of Markovian diffusion on the molecular level. The Smoluchowski theory is a no-
processes, and at the same time can be met in physicaltfble exception here, but in this one has no room for genuine
signicant contexts. Therefore various forms of the Fokkerflows and velocity field profiles which are generated in the
Planck equation for tracers driven by familiar compressiblerandom medium.
velocity fields were discussed.

1. -
;Vk[P(ZDzajé’k)mP]IVJ‘(ZQ)- (21)

Ab(x,t)=0, (22)
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