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Diffusion process in a flow
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~Received 8 September 1997!

We analyze circumstances under which the microscopic dynamics of particles which are driven by a forced,
gradient-type flow can be consistently interpreted as a Markovian diffusion process. In the case of conservative
forces~we adopt a smooth, deterministic version of ‘‘stirring’’ without any circular motion!, the repulsive case

only, FW 5¹W V with V(xW ,t), bounded from below, is unquestionably admitted by the compatibility conditions.
To allow for an attractive force, the process must induce a nonstandard compensating pressure term in the local
~momentum! conservation law. In particular, that applies to a probabilistic interpretation of a compressible
Euler flow with an arbitrary external~Newtonian! forcing. @S1063-651X~98!08701-7#

PACS number~s!: 47.55.Kf, 05.40.1j, 05.60.1w
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Whenever one tries to analyze random perturbations
are either superimposed upon or intrinsic to a driving de
ministic motion, quite typically a configuration space equ

tion xẆ5vW (xW ,t) is invoked, which is next replaced by a form
infinitesimal representation of an Itoˆ diffusion process

dXW (t)5bW „XW (t),t…dt1A2DdWW (t). HereWW (t) stands for the
normalized Wiener noise, andD for a diffusion constant.

The dynamical meaning ofbW (xW ,t) relies on a specific diffu-
sion input and its possible phase-space~e.g., Langevin!
implementation, that entail a detailed functional relations

of vW (xW ,t) andbW (xW ,t), and justify such notions as: diffusion i
an external force field, diffusion under various strains, dif
sion along, against, or across the driving deterministic fl
@1#, and diffusion with shear effects@2#. The pertinent math-
ematical formalism corroborates both the Brownian mot
of a single particle in flows of various origin and the diffu
sive transport of neutrally buoyant components in flows
the hydrodynamic type.

Our major issue is a probabilistic interpretation of vario
linear and nonlinear partial differential equations of physi
relevance. Expressing this in more physical terms, we
dress an old-fashioned problem of ‘‘how nonlinear’’ an
‘‘how time dependent’’ the driving velocity field can be t
yield a consistent stochastic diffusion process~or the
Langevin-type dynamics!. Another issue is to obtain hint
about a possible non-deterministic origin of such fields@3#.

Clearly, in random media that are statistically at rest, d
fusion of single tracers or dispersion of pollutants are w
described by the Fickian outcome of the molecular agitati
and also in the presence of external force fields~then in
terms of Smoluchowski diffusions!. On the other hand, it is
of fundamental importance to understand how flows in
random medium~fluid, as example! affect dispersion. Such
velocity fields are normally postulated asa priori given
agents in the formalism, and their~molecular or else! origin
is disregarded. Moreover, the force exerted upon tracer
usually viewed independently from the forcing~‘‘stirring’’ !
that might possibly perturb the random medium itself.

Except for suitable continuity and growth restriction
necessary to guarantee the existence of the processXW (t) gov-
erned by the Itoˆ stochastic differential equation, the choice
571063-651X/98/57~1!/569~5!/$15.00
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the driving velocity fieldvW (xW ,t) and hence of the related drif
bW (xW ,t) is normally~in typical physical problems! regarded as
arbitrary ~except for being ‘‘not too nonlinear’’!.

The situation looks deceivingly simple@2#, if we are~for
example! interested in a diffusion process interpretation
passive tracers dynamics in thea priori given flow whose
velocity field is a solution of the nonlinear partial differenti
equation, be it Euler, Navier-Stokes, Burgers or the like.
implicit assumption, that passively buoyant tracers in a fl
have a negligible effect on the flow, looks acceptable~basi-
cally in the case when the concentration of a passive c
ponent in a flow is small!. Then one is tempted to view
directly the fluid velocity fieldvW (xW ,t) as the forward drift
bW (xW ,t) of the process, with the contaminant being diffusive
dispersed along the streamlines.

Here apparent problems arise: irrespectively of a spec
physical context and the phenomenology~as, e.g., the Bolt-
zmann equation with its, as yet, not well understood Brow
ian motion approximation! standing behind the involved par
tial differential equations, some stringent mathemati
criteria must be met to justify the diffusion process scena
be it merely a crude approximation of reality.

That is, in general, the assumed nonlinear evolution r
for vW (xW ,t) must be checked against the dynamics that is
lowed to govern the space-time dependence of the forw
drift field bW (xW ,t) of the pertinent process@4#, which isnot at
all arbitrary. The latter is ruled by standard consistency c
ditions that are respected by any Markovian diffusion p
cess, and additionally by the rules of the forward and ba
ward Itô calculus, @1,4#, the mathematical input that i
frequently ignored in the physical literature.

We have analyzed this issue before@5#, where, as a by-
product of the discussion, the forced Burgers dynamics

] tvW B1~vW B•¹W !vW B5DnvW B1¹W V ~1!

and the diffusion-convection equation

] tc1~vW B•¹W !c5Dnc ~2!

@originally, for the concentrationc(xW ,t) of a passive compo-
nent in a flow#, in the case of gradient velocity fields, we
569 © 1998 The American Physical Society
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570 57PIOTR GARBACZEWSKI
found to be generic to a Markovian diffusion process inp
In that case the dynamics of the concentration~in general
this notion does notcoincide with the probability density!
results from the stochastic process whose densityr(xW ,t)
evolves according to the standard Fokker-Planck equatio

] tr5Dnr2¹W •~bW r!, ~3!

the forward drift solves an evolution equation

] tbW 1~bW •¹W !bW 52DnbW 1¹W V, ~4!

and there holds

bW 8vW B12D¹W lnr. ~5!

The previous reasoning can be easily exemplified by c
sidering the standard~neglecting external forces! Brownian
motion with the initial ~arbitrary, but sufficiently regular!

densityr0(xW ). Its evolutionr0(xW )→r(xW ,t) is implemented
by the conventional heat kernel p(yW ,s,xW ,t)
5@4pD(t2s)#21/2exp@2(xW2yW)2/4D(t2s)#, where xW and yW
stand for space variables, whilet and s, 0<s,t, refer to
respective time instants. The backward drift of the proces~a
solution of the unforced Burgers equation!, is defined as fol-
lows: vW B(xW ,t)522D¹W lnr. The pertinent concentration dy
namics is given by

c~xW ,t !5E p* ~yW ,0,xW ,t !c0~yW !d3y, ~6!

where p* (yW ,0,xW ,t)8p(yW ,0,xW ,t)@r0(yW )/r(xW ,t)#, and clearly
refers to a tagged population of Brownian particles wh
belong to an overall diffusing Brownian ensemble. Indeed
we arbitrarily decompose the density of the process intr

5r11r2, and regardr1(xW ,t) as the density of a tagge
Brownian population, then an appropriate definition of t
concentration~effectively, we deal with the percentage
tagged particles in the generic flow! is

c~xW ,t !5
r1~xW ,t !

r~xW ,t !
. ~7!

By inspection, one can check the validity of the diffusio
convection equation.

By combining intuitions which underly the self-diffusio
description@6# with those appropriate for probabilistic solu
tions of the so-called Schro¨dinger boundary-data and nex
interpolation problems@5,7,8#, the above argument can b
generalized to arbitrary conservatively forced diffusion p
cesses, quite irrespectively of a physical context in wh
their usage can be justified.

Let us consider a densityr(xW ,t),t>0 of a stochastic dif-
fusion process, solving the Fokker-Planck equation~3!. For
drifts that are gradient fields, the potentialV in Eqs.~1! and
~4! ~whateverits functional form is!, mustallow for a repre-
sentation formula, reminiscent of the probabilistic Camer
Martin-Girsanov transformation
t.

-

if

-
h

-

V~xW ,t !52DF ] tF1
1

2
S bW 2

2D
1¹W •bW D G , ~8!

wherebW (xW ,t)52D¹W F(xW ,t).
For the existence of the Markovian diffusion process w

the forward driftbW (xW ,t), we must resort to potentialsV(xW ,t)
that arenot completely arbitrary functions. Technically@7#,
the minimal requirement is that the admissible potentia
bounded from below. This restriction will have profoun
consequences for our further discussion of diffusion in
flow.

If we setr5r11r2 again, and demand thatr1Þr solves
the Fokker-Planck equation with the very same driftbW (xW ,t),
as r does, then as a necessary consequence of the ge
formalism @5,7#, the concentrationc(xW ,t)5r1(xW ,t)/r(xW ,t),
solves an associated diffusion-convection equation] tc

1(vW B•¹W )c5Dnc. Here, the flow velocityvW B(xW ,t) coin-
cides with the backward drift of the generic diffusion proce
with the densityr(xW ,t).

We should clearly discriminate between forces whose
fect is a ‘‘stirring’’ of the random medium and those actin
selectively on diffusing particles, with a negligible effect o
the medium itself. For example, the traditional Smo
chowski diffusion processes in conservative force fields
considered in random media that are statistically at rest. F
lowing the standard~phase-space, Langevin! methodology,
let us setbW (xW )5(1/b)KW (xW ), where b is a ~large! friction
coefficient andKW represents an external Newtonian force p
unit of mass~e.g., an acceleration! that is of gradient from
KW 52¹W U. Then the effective potentialV reads

V5
KW 2

2b2 1
D

b
¹W •KW , ~9!

and the only distinction between the attractive or repuls
cases can be read out from the term¹W •KW . For example, the
harmonic attraction or repulsionKW 57axW , a.0 would give
rise to a harmonic repulsion, if interpreted in terms of¹W V, in
view of V5(a2/2b2)xW273Da/b. The innocent looking
73D(a/b) renormalization of the quadratic function give
rise to entirely different diffusion processes, with an equil
rium measure arising in case ofU(xW )51(a/2)xW2 only.

The situation would not change under the incompressi
ity condition ~cf. also the probabilistic approaches to the E
ler, Navier-Stokes, and Boltzmann equations@9#!. Following
Townsend’s@2# early investigation of the diffusion of hea
spots in isotropic turbulence, we may chooseU(xW )
5(a/2)x22(a/4)(y21z2), which implies¹W •KW 50. Then,
V(xW )5(a2/2b2)@x21 1

4 (y21z2)#; hence the repulsiveV is
produced again in the equation of motion characterizin
stationary diffusion in an incompressible fluid: divvW 50, bW

5bW * 5vW→(vW •¹)vW 5¹W V. By formally changing the sign of
V, we would arrive at the attractive variant of the proble
that is, however,incompatiblewith the diffusion process sce
nario in view of the unboundedness of2V from below.

We have thus arrived at the major point of our discussi
a priori, there is no way to incorporate the attractive forc
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57 571DIFFUSION PROCESS IN A FLOW
which affect~drive! the flow and nonetheless generate a c
sistent diffusion-in-a-flow transport. Clearly, there is no re
son to exclude the attractive variants of the potentialV from
considerations, since the deterministic motion is consis
with them. However, if the diffusion is to be involved, w
can save the situation only by incorporating~hitherto uncon-
sidered! ‘‘pressure’’ term effects as suggested by the gene
form of the compressible Euler (FW 52¹W V stands for exter-
nal volume forces, andr for the fluid density thatitself un-
dergoes a stochastic diffusion process! equation

] tvW E1~vW E•¹W !vW E5FW 2
1

r
¹W P, ~10!

or the incompressible@9# Navier-Stokes equation

] tvW NS1~vW NS•¹W !vW NS5
n

r
nvW NS1FW 2

1

r
¹W P, ~11!

both to be compared with Eqs.~1! and~4!, that set dynamica
constraints for respectively backward and forward drifts o
Markovian diffusion process.

Notice that the acceleration termFW in Eqs.~10! and ~11!
is normally regarded as arbitrary, while the correspond
term¹W V in Eqs.~1! and~3! involves a bounded from below
function V(xW ,t). Since, in the case of gradient veloci
fields, the dissipation term in the incompressible Navi
Stokes equation~11! identically vanishes, we should conce
trate on analyzing the possible ‘‘forward drift of the Marko
ian process’’ meaning of the Euler flow with the veloci
field vW E @Eq. ~10!#.

At this point it is useful, at least on formal grounds,
invoke the standard phase-space argument that is valid
Markovian diffusion process taking place in a given flo

vW (xW ,t) with as yet unspecified dynamics or physical orig
We account for an explicit force exerted upon diffusing p
ticles, while not necessarily directly affecting the drivin
flow itself. That is @2,4#, for infinitesimal increments of
phase-space random variables, we set

dXW ~ t !5VW ~ t !dt,
~12!

dVW ~ t !5b@vW ~xW ,t !2VW ~ t !#dt1KW ~xW !dt1bA2DdWW ~ t !.

Following the leading idea of the Smoluchowski appro
mation, we assume thatb is large, and consider the proce
for times significantly exceedingb21. Then an appropriate
choice of the velocity fieldvW (xW ,t) ~boundedness and growt
restrictions are involved! may in principle guarantee@4# the
convergence of the spatial partXW (t) of process~12! to the Itô
diffusion process with infinitesimal increments~where the
force KW effects can be safely ignored if we are interes
mostly in the driving motion!

dXW ~ t !5vW ~xW ,t !dt1A2DdWW ~ t !. ~13!

However, one cannot blindly insert in the place of t
forward drift vW (xW ,t) any of the previously considered bu
-
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velocity fields, without going into apparent contradiction
Specifically, Eq.~4! with vW (xW ,t)↔bW (xW ,t) must be valid.

By resorting to velocity fieldsvW (xW ,t) which obey
nvW (xW ,t)50, we may pass from Eq.~4! to an equation of the
Euler form, Eq.~10!, provided Eq.~8! holds true, and then
the right-hand-side of Eq.~4! involves a bounded from be
low effective potentialV.

An additional requirement is that

FW 2
1

r
¹W P8¹W V. ~14!

Clearly, in the case of a constant pressure, we are left w
the dynamical constraint (bW↔vW E),

] tbW 1~bW •¹W !bW 5FW 5¹W V, ~15!

combining simultaneously the Eulerian fluid and the Mark
diffusion process inputs,if and only if FW is repulsive, e.g.
2V(xW ,t) is bounded from below. Quite analogously, by s
ting FW 50W , we would obtain a constraint on the admissib
pressure term, in view of

] tbW 1~bW •¹W !bW 52
1

r
¹W P5¹W V. ~16!

In both cases of Eqs.~15! and~16!, the effective potential
V must respect the functional dependence~on a forward drift
and its potential! prescription~8!. In addition, the Fokker-
Planck equation~3! with the forward driftvW E(xW ,t)8bW (xW ,t)
must be valid for the densityr(xW ,t).

To our knowledge, in the literature there is only on
known specific class of Markovian diffusion processes t
would render the right-hand side of Eq.~10! repulsive but
nevertheless account for the troublesome Newtonian ac
erations; e.g., those of the form2¹W V, with 1V bounded
from below. Such processes have forward drifts that,
each suitable, bounded from below functionV(xW ), solve the
nonlinear partial differential equation

] tbW 1~bW •¹W !bW 52DnbW 1¹W ~2Q2V!, ~17!

with the compensating pressure term

Q82D2
nr1/2

r1/2
8

1

2
uW 21D¹W •uW , ~18!

uW ~xW ,t !5D¹W lnr~xW ,t !.

A discussion can be found in Refs.@4,5,7,8#.
Clearly, we have

FW 52¹W V, ¹W 2Q52
1

r
¹W P, ~19!

where

P~xW ,t !522D2r~xW ,t !n lnr~xW ,t !. ~20!
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Effectively, P is here defined up to a time-dependent co
stant. Another admissible form of the pressure term re
~summation convention is implicit!

1

r
¹W k@r~2D2] j]k!lnr#5¹W j~2Q!. ~21!

If we consider a subclass of processes for which the diss
tion term identically vanishes~ a number of examples can b
found in Refs.@7#!,

nbW ~xW ,t !50, ~22!

Eq. ~17! takes a conspicuous Euler form~10!, vW E↔bW .
Let us notice that Eqs.~20! and~21! provide for a gener-

alization of the more familiar, equation of stateP;r, ther-
modynamically motivated and suited for ideal gases and
ids. In the case of density fields for which2n lnr;const,
the standard relationship between the pressure and the
sity is reproduced. In the case of density fields obeyin
2n lnr50, we are left with at most a purely time
dependent or constant pressure. Pressure profiles ma
highly complex for arbitrarily chosen initial density and/
the flow velocity fields.

To conclude the present discussion, let us invoke R
@9,6,7#. The problem of a diffusion process interpretation
various partial differential equations is known to extend b
yond the original parabolic equations setting, to general n
linear velocity field equations. On the other hand, the n
linear Markov jump processes associated with the Boltzm
equation, in the hydrodynamic limit, are believed to imp
either an ordinary deterministic dynamics with the veloc
field solving the Euler equation, or a diffusion process who
drift is a solution of the incompressible Navier-Stokes eq
tion ~in general, without our curlvW 50 restriction!, @6,9#. The
case ofarbitrary external forcing has never been satisfac
rily solved.

Our reasoning went otherwise. We asked for the adm
sible space-time dependence of general velocity fields
are to play the role of forward drifts of Markovian diffusio
processes, and at the same time can be met in physi
signicant contexts. Therefore various forms of the Fokk
Planck equation for tracers driven by familiar compressi
velocity fields were discussed.
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Our finding is that solutions of the compressible Eu
equation are appropriate for the description of the gen
nondeterministic~e.g., random and Markovian! dynamics
running under the influence of both attractive and repuls
stirring forces, and refer to a class of Markovian diffusio
processes orginally introduced in Refs.@4,7,3#. That involves
only the gradient velocity fields~a couple of issues concern

ing the curlbW Þ0 velocity fields and their nonconservativ
forcing were raised in Ref.@5#!.

Remark: Let us stress that a standard justification of t
hydrodynamic limit for a tracer particle invokes a Brownia
particle in an equilibrium fluid. An issue of how much th
tracer particle disturbs the fluid~random medium! locally,
and how far away from the tracer particle the thermal e
librium conditions regain their validity@6#, is normally dis-
regarded. Moreover, in the standard derivation of local c
servation laws from the Boltzmann equation, the forci
term on the right-hand side of the Euler or Navier-Stok
equation up to scalings does coincide with the force act
on each single particle comprising the system. Thus, in
framework, there is no room for any discrimination betwe
forces acting upon tagged particles and those perturbing
spatial flows~once on the level of local averages!.

Quite on the contrary, the force term in the Kramers eq
tion and that appearing in the related local conservation
for the forward drift or for the current velocity of the diffu
sion process are knownnot to coincide in general. Typically
the action of an external force is confined to diffusin
~tagged! particles withno global or local effect on the sur
rounding random medium, cf. standard derivations of
Smoluchowski equation. This feature underlies proble
with the diffusion process interpretation of general part
differential equations governing physically relevant veloc
fields. Specifically, any external intervention~forcing! upon
a stochastically evolving~in the diffusion process approxi
mation! system gives rise to a perturbation of local flow
which seldom can be analyzed as forcing any definite t
on the molecular level. The Smoluchowski theory is a n
table exception here, but in this one has no room for genu
flows and velocity field profiles which are generated in t
random medium.
-

n,
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